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ABSTRACT

This study addresses the challenges of low-precision 3D visualization, unclear irrigation requirements, and
inadequate smart decision-making in tea garden management. A twin data-driven 3D visualization and control
system is proposed based on a six-dimensional digital twin framework, consisting of physical entities, virtual
models, data connections, services, digital twin data, and decision mechanisms. First, real-time bidirectional
data interaction is achieved through an OPC UA communication channel and multi-source sensor integration
with a MySQL database. Second, parametric tea plant modeling in 3ds Max, combined with particle systems,
dynamic shaders, ambient occlusion (AQ), and level-of-detail (LOD) rendering, enables high-fidelity and
dynamic 3D visualization. Finally, an AquaCrop-LSTM irrigation demand prediction model was developed by
integrating the FAO Penman—Monteith method, the AquaCrop model, and a Long Short-Term Memory (LSTM)
neural network. The complete system, deployed within Unity, forms a closed-loop architecture of perception,
mapping, decision-making, and feedback. Experimental results show that the LOD strategy improves the frame
rate by 121% while reducing vertex count by 93.7%. The AquaCrop-LSTM model achieves a mean absolute
error (MAE) of 0.251 mm and an R? value of 0.927. Under a 30-user concurrent load test, the system
maintained an error rate below 0.02%. These findings demonstrate that the proposed system provides reliable
technical support for visual monitoring and efficient irrigation management in tea gardens.
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INTRODUCTION

As a globally significant economic crop, tea production requires precise management to achieve
agricultural modernization. Digital twin technology, by constructing accurate mappings between physical
entities and virtual environments, provides crucial support for agricultural digital transformation (Mitsanis C et
al., 2024). The theory of digital twins has evolved from the three-dimensional conceptual model proposed by
Grieves M et al. (2017) to the five-dimensional structure introduced by TAO F et al. (2019), which integrates
service systems and data networks to enable physical—virtual collaboration.
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In agriculture, digital twins have been applied to equipment, crops, and resource management. Lang Y
et al. (2025) enhanced greenhouse harvesting performance through virtual-real path optimization. Xu X. et al.
(2025) developed a growth twin platform for winter wheat. Mirbod O. et al. (2025) proposed a Sim2Real
framework to improve strawberry detection in real environments.

Kim S. et al. (2024) supported single-plant lifecycle management of citrus; and Alves et al. (2023)
optimized irrigation strategies using a meteorology—soil-crop response mechanism.

However, digital twin applications in complex open agricultural scenarios still face limitations in
dimensionality and decision-making capability. To address high complexity, Zhou C et al. (2022) and Wang
H.J. et al. (2024) introduced six-dimensional models incorporating visualization, learning, and decision-making,
significantly enhancing system intelligence and interaction.

Existing tea garden digital twins mainly focus on state monitoring and information display, while showing
weakness in predictive modeling and data-driven decision support. Therefore, this study targets an ecological
tea garden in Rizhao and constructs a six-dimensional digital twin framework by introducing a “decision
mechanism,” forming a management loop of “data perception—dynamic mapping—decision execution—
feedback optimization” to drive sprinkler irrigation and iteratively improve system performance.

MATERIALS AND METHODS
Six-Dimensional Digital Twin Model for Tea Gardens

Drawing on the orchard digital twin framework (WANG H.J et al.,2024), this study constructs a six-
dimensional digital twin architecture for tea gardens (Figure 1), integrating physical entity, virtual model,
connection, service, twin data, and decision mechanism.
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Fig. 1 - Tea Garden Digital Twin 6D Model

The model centers on a tight coupling between physical entities, virtual models, and twin data (Liu X. et
al., 2023). Twin data acts as the core nexus, aggregating real-time sensor and device information to drive
dynamically evolving virtual models (Mathur P. et al., 2024). The decision mechanism employs data fusion,
threshold triggering, and time-series prediction to generate optimized strategies (e.g., for irrigation). Through
a data feedback loop, it iteratively optimizes tea growth, equipment operation, and decisions. The service layer
provides interactive interfaces such as environmental monitoring dashboards and weather simulation tools.
The connection layer, enabled by bidirectional communication protocols, facilitates uplink (synchronizing
physical states to the twin data platform) and downlink (transmitting control commands from the decision
mechanism to physical terminals) interactions. This establishes a closed-loop management framework
encompassing “data sensing-dynamic mapping-decision execution-feedback optimization,” covering tea
garden environmental perception, dynamic decision-making (Wang J.J. et al., 2021), and full lifecycle
management.

Overall Architecture of the Tea Garden Twin System

Based on the theoretical framework of the six-dimensional digital twin model, this study integrates
key technology systems and management elements to construct the overall architecture of the tea garden
digital twin system, as shown in Figure 2.
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It is divided into the perception layer, data resource layer, model layer, application layer, and
decision layer. Standardized interfaces enable bidirectional data flow and functional collaboration between
layers, ultimately forming a closed-loop management mechanism (Chen Y.P. et al., 2025).
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Fig. 2 - Architecture of the Digital Twin System for Tea Plantation Management

Tea Garden Environmental Perception
Environmental perception, as the “nerve endings” connecting the twin system with the physical world,
enables real-time acquisition of tea garden environmental and growth conditions, supporting virtual
modeling and data analysis. Soil sensors deployed at the surface, 5 cm, and 20 cm depths monitor
temperature, moisture, electrical conductivity (EC), and nutrient information (N, P, K). A smart weather
station records air temperature and humidity, light intensity, and CO- concentration, while imaging devices
capture plant phenotypes and topographic features. These multi-source data provide essential inputs for
constructing high-precision virtual tea garden models and enabling data-driven management.
Virtual Tea Garden Environment Construction
High-fidelity tea plant models form the foundation for 3D visualization. Based on multi-angle images
of realistic leaf and branch morphology, parametric modeling was performed in 3ds Max. NURBS curves
(Kuraishi T. et al., 2025) were used to create precise leaf meshes (Figure 3), while cylinder-based
polygonal editing formed the branch structures.

{2

Fig. 3 - Leaf surface Mesh
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High-resolution texture maps—Diffuse, Normal, and Displacement—were generated from images
to represent surface color, roughness, and vein details. A skeletal system was built for branches, and
leaves were assembled based on image features to produce a biologically accurate model.

In Unity3D, a digital twin of the tea plantation was constructed by integrating real-world data,
including plants, meteorological and soil properties, and actual imagery, establishing a dual mapping
between physical entities and digital models. Terrain textures were generated from image features using
the Terrains system to form the geospatial environment.

Then, employ ambient occlusion (AO) (Wu Y.T. et al., 2025) to simulate the attenuation of ambient
light caused by geometric occlusion, enhancing the realism of details in the virtual environment and
assisting managers in spatial analysis of tea plant distribution. A tangent space-constrained hemispherical
sampling domain was constructed based on normal vectors.

Uniformly distributed sample points were generated using the Hammersley low-discrepancy
sequence {g;}. Its polar coordinates satisfy:

Dy = %,cosek = \/1——5,( D

Among these, (¢, € U[0,1)) maps the sampling point to world space via the tangent space transformation
matrix TBN, yielding the sampled position.

4; = Pworta + TBN - (QL’ ' T) (2)

Here, r € [0.1,2.0] represents the sampling radius, controlling the local occlusion range. After projecting
the sampling point g; into screen space, the theoretical depth z, is computed and compared against the
actual depth buffer value d...n(q;) Using a threshold to determine the visibility range.

1, d (q) <z, —¢€
V ; — { screen 13 qi 3
(@) 0, otherwise ®
The anti-aliasing threshold € = 0.05 m, is used to eliminate artifacts caused by deep buffer quantization

errors.

The shielding coefficient calculation incorporates a distance attenuation function w(d) = max (0,1 —
d/r) to suppress far-field interference. The normalized shielding strength is defined as:

N
1
AO(p) =1- NZ V(g) - w(|lg; — Pworial|) 4)

Finally, noise reduction is achieved using bilateral filtering that combines spatial and color domains:
_ 2jea A0 (N Go, (|l = PI|)Go, (ALip)

AOinat = : ®)
final Yjea Gas(| lj =l |) Go, (Aljp)

Among these, G, represents the Gaussian kernel, g; = 2.0 denotes the spatial domain standard
deviation (controlling the fuzzy range), and ¢, = 0.2 indicates the color domain standard deviation
(controlling edge sensitivity).

As shown in Fig. 4(a)(d), the AO algorithm with normal alignment sampling and dynamic bilateral
filtering enables virtual environment rendering to closely match the realism of the actual environment.

A particle system with Perlin noise was used to generate 3D cloud layers, producing controllable
pseudo-random values to determine cloud particle distribution, density, and morphology. Precipitation
simulation also adopted a particle system, with particle density and sound effects adjusted according to
intensity levels from the twin data, enabling dynamic rain and snow effects, as shown in Fig. 4(b)(e).

Additionally, Unity’s UGUI, Animation, and Timeline were combined to simulate environmental
changes, allowing operators to adjust virtual parameters and observe tea plant responses. As shown in
Fig. 4(c)(f), prolonged soil moisture below the threshold causes virtual leaves to yellow and curl, while
adaptive decision prompts provide stress warnings and support irrigation optimization.
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(b) Meteorological Simulation — Auto (c) Normal Leaf

(d) Virtual Environment  (e) Meteorological Simulation — Manual  (f) Yellowing & Curling Leaf
Fig. 4 - Comparative Analysis Between Virtual and Real Scenarios and Data-Driven Effects

Level of Detail (LOD) Processing
LOD technology balances rendering efficiency and visual quality in large-scale 3D environments.
In tea garden models, dense vegetation with complex geometry can overload GPU vertex processing,

reduce frame rates, and cause Moiré patterns, impacting both performance and accuracy.
1 T P —— N T —————

(a)LOD_0 (b)LOD_1 (a)LOD_2 (b)LOD_
Fig. 5 - Model Comparison Under Varied LOD Tiers

A four-level LOD model dynamically adjusts rendering quality by camera distance (Fig.5) (Xia J.C.
et al., 1997). Close range (0—15 m: LOD_0) uses high-detail models preserving fine textures and curves.
Increasing distance activates lower-detail models (15-30 m: LOD_1; 30-60 m: LOD_2; >60 m: LOD_3),
reducing polygon/vertex computations while maintaining visual coherence. Unity 2023 A/B testing
(with/without LOD) yielded metrics in Table 1.

Table 1
Performance Evaluation of LOD Optimization
Metrics Control Group Experimental Group Improvement Rate
Average Frame Rate (fps) 28.6 63.2 121.0%
Vertex Count (M) 171.5 10.8 93.7%
CPU Main Thread Time (ms) 17.4 7.7 55.7%
Rendering Thread Time (ms) 14.3 5.8 59.4%

Based on the quantitative analysis in Table 1, the four-level LOD technology demonstrated
substantial rendering optimization within the tea garden visualization environment. The rendering thread
time decreased by 59.4%, indicating a reduced CPU-to-GPU data transfer burden. The average frame
rate increased to 63.2 FPS (+121.0%), stable performance under varying vegetation densities.
Additionally, the vertex count was reduced by 93.7% (171.5M — 10.8M), which freed GPU bandwidth for
advanced post-processing operations (e.g., SSGI) and improved overall visual fidelity.

Tea Plant Water Requirement Prediction Model

This study integrates the hydrological mechanisms of the AquaCrop model (Alvar-Beltran J. et al.,
2025) with an LSTM neural network, incorporating the FAO Penman-Monteith equation (Shu Z. et al.,
2025).
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Using air temperature, humidity, wind speed, light intensity, soil temperature, moisture, electrical
conductivity, daily rainfall, and other meteorological indices as feature parameters, and water requirement
as the target variable, an AquaCrop-LSTM prediction model was constructed. As shown in Table 2, the
data were split into training and testing sets with a cutoff date of January 1, 2025. Monitoring timestamps
were converted to UTC, missing values were handled using forward filling (max gap < 4 hours), and
discrete light intensity data were temporally integrated based on photon flux density theory.

*  (lux; - At;) - 0.0079
RS — 21_1( 1 1061) (6)

In the equation, At; represents the time difference (in seconds) between adjacent monitoring points. The
conversion factor of 0.0079 is determined based on the photon energy conversion model, ultimately
yielding the daily solar radiation amount (MJ/m?/day).

For parameters susceptible to transient disturbances, such as wind speed u, and soil EC values,
outlier detection was performed using Tukey's fences method (IQR=1.5), with Winsorized truncation
applied based on the 30 principle. Z-score normalization was conducted separately for the feature matrix
X € R™™ and the target variable y:

X—HU

z= (7)
o
In particular, y and o are derived from the training set statistics to prevent information leakage.
Table 2
Source of Data
Stage Period Location Data Volume (records)
Rizhao City, 3
May 2022 — Dec 2022 Shandong 6 x 10
Training Set Jan 2023 — Dec 2023 Rizhao City, 8 x 103
Shandong
Jan 2024 — Dec 2024 Rizhao City, 1x 10
Shandong
. Rizhao City, 3
Testing Set Jan 2025 — Apr 2025 Shandong 6 x 10

Reference evapotranspiration (ET,) is calculated using the FAO Penman-Monteith equation, whose
core formula is:

900
0408A(Rn - G) + ywuz (es - ea)

A+y(1+ 0.34u,) ®

ETO =

In the formula: R,—net radiation (MJ/m?/day)
A—slope of saturated vapor pressure-temperature curve (kPa/°C)
y—dry-wet bulb constant (kPa/°C)
G—soil heat flux (MJ/m?/day)
u,—wind speed (m/s)
es-e,—saturated and actual vapor pressures, respectively

Tea plant water requirement is adjusted by crop coefficient (K,) to modify ET,:
ET. = max(K, - ET,,0) 9

To capture the lag effects and cyclical patterns of moisture demand, a multidimensional feature
space is constructed by introducing a 7-day lag operator:
x1*9 = [WaterReq,_,, ..., Rainfall,_,] (10)
A total of 21-dimensional lag features were generated, covering the physiological delay cycle of tea
plant water absorption.
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During model training and evaluation, the Huber loss function (6=0.5) was employed to balance
mean squared error (MSE) and mean absolute error (MAE), enhancing robustness to outliers. Weight
decay (weight _decay=1e*) and gradient clipping (clip_grad_norm=0.5) were applied to constrain the
parameter space, prevent overfitting, and stabilize the LSTM training process. The number of training
epochs was set between 50 and 200, and batch sizes ranged from 32 to 128 to improve model
generalization.

Twin Data-Driven Decision Control and Feedback Optimization
After obtaining physical data and constructing the virtual environment, the system uses real-time
digital twin data to support virtual—physical interaction and intelligent decision-making, as shown in Fig.6.
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Fig. 6 - Data-Driven DT and Decision-Making Processes

Multi-source sensors collect environmental data, which is transmitted via 5G to an edge gateway
and processed based on OPC UA (Carballo J.A et al., 2024), then forwarded to the cloud through MQTT.
The cloud server uses MySQL to integrate the data into a dynamically updated digital twin dataset. The
Unity client retrieves the data through a RESTful API, displays it in real time (Fig. 7(b)), and synchronizes
the virtual environment, simulating lighting, weather, and crop growth through a particle system script.

At the smart decision level, the system combines digital twins with predictive models, uses control
scripts and Unity coroutines for asynchronous control, analyzes data every 30 minutes, and based on the
water demand predicted by the AquaCrop-LSTM model, calculates the actual irrigation amount Q using
Equation (15) to generate precise control commands.

10-ET.-A-t

Q= — (11)

In the equation, A represents the sprinkler irrigation area (m2?), t denotes the forecast period (day), and
71 indicates the sprinkler irrigation water utilization coefficient.

Smart Tea Garden | <

. AP > e S i e
(a) Aerial View of Ecological Tea Garden (b) Main Interface of Twin Tea Garden

Fig. 7 - Tea Plantation Aerial View and Digital Twin Dashboard
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Fig. 8 - Tea Garden Physical Devices and Client Response

The control script analyzes state changes in the virtual model to generate irrigation commands,
which are downlinked asynchronously via an edge gateway to precisely control physical irrigation
equipment in the tea garden (as shown in Fig. 8(a)). The resulting environmental parameters then drive
synchronous updates in the virtual environment (see Fig. 8(b)).

These state data are fed back into the decision-making mechanism and integrated with the digital
twin dataset to optimize decisions, effectively preventing water stress and disease spread caused by
under- or over-irrigation. This enables closed-loop precision irrigation control.

RESULTS
Prediction Model Validation
To evaluate the performance of the AquaCrop-LSTM model, it was compared against three other
models—LightGBM, TCN-Transformer, and Random Forest—using MAE, MSE, and R? under consistent
input features and hyperparameter optimization. AquaCrop-LSTM outperformed all others in every metric.
As shown in Figure 9, the model demonstrated high accuracy in predicting tea plant water demand,
with absolute errors below 0.4 mm in 94.5% of cases. Its MAE (0.251 mm) was 19.7% lower than that of
LightGBM, the second-best model, due to its effective integration of crop growth modeling and temporal
feature extraction via LSTM. During the high-demand period (March 15-25, 2025), the average deviation
was 0.12 mm, and its MSE (0.166 mm?) was 34.0% lower than TCN-Transformer (0.251 mm?).

Table 3
Comparison of Model Performance
Models MAE/(mm) MSE/(mm) R?
LightGBM 0.314 0.219 0.904
TCN-Transformer 0.344 0.251 0.878
Random Forest 0.433 0.302 0.852
AquaCrop-LSTM 0.251 0.166 0.927
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Fig. 9 - Comparison of Error for Each Model Folded Line
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Fig. 10 - Comparison of Predicted and True Values for Each Model Folded Line

Under extreme weather conditions, prediction errors reached 32.6% and 28.4% on February 16
(frost) and April 10 (heavy rainfall), respectively, due to input deviations from abrupt environmental
changes (Fig. 10). In contrast, TCN-Transformer showed significant lag errors during high water-demand
periods (March 20—April 1), while AquaCrop-LSTM effectively integrated environmental factors—including
soil temperature, moisture, light, and rainfall—via multi-scale feature fusion, enhancing timeliness and
robustness under sudden weather shifts.

In summary, by combining hydrological mechanisms of crop modeling with data-driven methods,
the AquaCrop-LSTM model outperforms comparative models in both prediction accuracy and stability. It
achieved a 38.1% reduction in error standard deviation and a 2.3% improvement in R? in high-value
intervals, providing a reliable theoretical basis for precision irrigation management in tea gardens.

Twin System Stability Validation

To evaluate the stability of the tea garden digital twin system under multi-user and high-volume data
transmission, gradient stress testing was conducted in Unity 2023.1.1f1c1. Seven concurrency levels (1
to 30) were set, each running 360 cycles processing 364,000 multi-source heterogeneous data per cycle.
Performance was sampled every 200ms, focusing on CPU usage, memory consumption, response time,
and transmission error rate, with thresholds given in Table 4.

Table 4
Performance Metric Thresholds for Stress Testing
Concurrency Response time Memory usage CPU usage Average Error Rate
Level (ms) (MB) (%) (%)
1 <800 <500 <30 <0.01
5 <1200 <800 <40 <0.01
10 <1800 <1200 <50 <0.015
15 <2500 <1500 <60 <0.015
20 <3500 <1800 <70 <0.02
25 <4500 <2000 <80 <0.02
30 <6000 <2200 <90 <0.025

As shown in Figure 11, as concurrency increased from 1 to 30, CPU usage rose from 20-25% to 80—
85%, stabilizing at 84%+2%; memory usage grew from 400-500 MB to 1900-2100 MB, and response time
extended from 500—-600 ms to 4800-5100 ms—all within acceptable thresholds (CPU <90%, response time
<6000 ms). The transmission error rate remained below 0.02%. Dynamic thread scheduling effectively
prevented resource contention, with no memory leaks or abnormal delays.
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Fig. 11 - Trend Chart of Performance Metrics Across Concurrency Levels

In conclusion, the system maintains a very low error rate (<0.02%) under high concurrency (30 users)
and large data throughput (364,000 entries/cycle), effectively mitigating resource contention and balancing
load to ensure reliability and stability in complex agricultural digital twin applications.

CONCLUSIONS

This study integrates OPC UA and MySQL for multi-source data connectivity, together with high-
precision parametric models built in 3ds Max and Unity, enhanced through particle systems, dynamic shaders,
ambient occlusion (AO), and LOD techniques. Combined with a hybrid water-demand prediction model that
incorporates the FAO Penman—Monteith equation, AquaCrop mechanisms, and LSTM networks, a six-
dimensional digital twin system for tea garden management was developed, enabling continuous sensing,
virtual-physical mapping, data-driven prediction, and closed-loop control. The system provides high-fidelity
real-time visualization of tea plants and their environment, and the AquaCrop—LSTM model achieves superior
performance (MAE = 0.251 mm, R? = 0.927). Under 30 concurrent users and 364,000 data records per cycle,
the platform maintained stable CPU usage (84% * 2%) with an error rate below 0.02%, demonstrating strong
robustness and scalability. Overall, the proposed framework offers reliable technical support for visual
monitoring, irrigation optimization, and intelligent decision-making in tea gardens, and provides a transferable
reference for precision irrigation in other perennial crops.
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