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ABSTRACT  

This study addresses the challenges of low-precision 3D visualization, unclear irrigation requirements, and 

inadequate smart decision-making in tea garden management. A twin data-driven 3D visualization and control 

system is proposed based on a six-dimensional digital twin framework, consisting of physical entities, virtual 

models, data connections, services, digital twin data, and decision mechanisms. First, real-time bidirectional 

data interaction is achieved through an OPC UA communication channel and multi-source sensor integration 

with a MySQL database. Second, parametric tea plant modeling in 3ds Max, combined with particle systems, 

dynamic shaders, ambient occlusion (AO), and level-of-detail (LOD) rendering, enables high-fidelity and 

dynamic 3D visualization. Finally, an AquaCrop-LSTM irrigation demand prediction model was developed by 

integrating the FAO Penman–Monteith method, the AquaCrop model, and a Long Short-Term Memory (LSTM) 

neural network. The complete system, deployed within Unity, forms a closed-loop architecture of perception, 

mapping, decision-making, and feedback. Experimental results show that the LOD strategy improves the frame 

rate by 121% while reducing vertex count by 93.7%. The AquaCrop-LSTM model achieves a mean absolute 

error (MAE) of 0.251 mm and an R² value of 0.927. Under a 30-user concurrent load test, the system 

maintained an error rate below 0.02%. These findings demonstrate that the proposed system provides reliable 

technical support for visual monitoring and efficient irrigation management in tea gardens. 

 

摘要 

针对茶园三维可视化精度低、喷灌需水量不明确及智能决策能力不足的问题，本文基于数字孪生六维架构（物

理实体、虚拟模型、连接、服务、孪生数据与决策机制），提出一种孪生数据驱动的茶园三维可视化与系统设

计方法。首先，基于 OPC UA构建双向数据通道，结合 MySQL集成多源传感器数据，为虚拟模型提供实时孪

生数据支持。其次，基于孪生数据在 3ds Max中进行茶树参数化建模，融合粒子系统、动态着色器、环境光遮

蔽（AO）与多细节层次（LOD）技术，实现虚拟茶园的动态三维可视化。最后，集成 FAO Penman-Monteith

公式、AquaCrop模型与长短期记忆网络（LSTM），构建 AquaCrop-LSTM需水量预测模型，并在 Unity中封

装形成“感知-映射-决策-反馈”闭环系统。实验表明：LOD 使帧率提升 121%，顶点数减少 93.7%；AquaCrop-

LSTM 模型的平均绝对误差为 0.251 mm，决定系数 R²=0.927，精度显著优于对比模型；系统在 30 并发用户

压力测试下错误率低于 0.02%，响应稳定。该系统为茶园可视化监控与水资源高效管理提供了可靠技术支撑。 

 

INTRODUCTION 

As a globally significant economic crop, tea production requires precise management to achieve 

agricultural modernization. Digital twin technology, by constructing accurate mappings between physical 

entities and virtual environments, provides crucial support for agricultural digital transformation (Mitsanis C et 

al., 2024). The theory of digital twins has evolved from the three-dimensional conceptual model proposed by 

Grieves M et al. (2017) to the five-dimensional structure introduced by TAO F et al. (2019), which integrates 

service systems and data networks to enable physical–virtual collaboration. 
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In agriculture, digital twins have been applied to equipment, crops, and resource management. Lang Y 

et al. (2025) enhanced greenhouse harvesting performance through virtual–real path optimization. Xu X. et al. 

(2025) developed a growth twin platform for winter wheat. Mirbod O. et al. (2025) proposed a Sim2Real 

framework to improve strawberry detection in real environments.  

Kim S. et al. (2024) supported single-plant lifecycle management of citrus; and Alves et al. (2023) 

optimized irrigation strategies using a meteorology–soil–crop response mechanism. 

However, digital twin applications in complex open agricultural scenarios still face limitations in 

dimensionality and decision-making capability. To address high complexity, Zhou C et al. (2022) and Wang 

H.J. et al. (2024) introduced six-dimensional models incorporating visualization, learning, and decision-making, 

significantly enhancing system intelligence and interaction. 

Existing tea garden digital twins mainly focus on state monitoring and information display, while showing 

weakness in predictive modeling and data-driven decision support. Therefore, this study targets an ecological 

tea garden in Rizhao and constructs a six-dimensional digital twin framework by introducing a “decision 

mechanism,” forming a management loop of “data perception–dynamic mapping–decision execution–

feedback optimization” to drive sprinkler irrigation and iteratively improve system performance. 

 

MATERIALS AND METHODS 

Six-Dimensional Digital Twin Model for Tea Gardens 

Drawing on the orchard digital twin framework (WANG H.J et al.,2024), this study constructs a six-

dimensional digital twin architecture for tea gardens (Figure 1), integrating physical entity, virtual model, 

connection, service, twin data, and decision mechanism. 

 
Fig. 1 - Tea Garden Digital Twin 6D Model 

 

The model centers on a tight coupling between physical entities, virtual models, and twin data (Liu X. et 

al., 2023). Twin data acts as the core nexus, aggregating real-time sensor and device information to drive 

dynamically evolving virtual models (Mathur P. et al., 2024). The decision mechanism employs data fusion, 

threshold triggering, and time-series prediction to generate optimized strategies (e.g., for irrigation). Through 

a data feedback loop, it iteratively optimizes tea growth, equipment operation, and decisions. The service layer 

provides interactive interfaces such as environmental monitoring dashboards and weather simulation tools. 

The connection layer, enabled by bidirectional communication protocols, facilitates uplink (synchronizing 

physical states to the twin data platform) and downlink (transmitting control commands from the decision 

mechanism to physical terminals) interactions. This establishes a closed-loop management framework 

encompassing “data sensing-dynamic mapping-decision execution-feedback optimization,” covering tea 

garden environmental perception, dynamic decision-making (Wang J.J. et al., 2021), and full lifecycle 

management. 

Overall Architecture of the Tea Garden Twin System 

Based on the theoretical framework of the six-dimensional digital twin model, this study integrates 

key technology systems and management elements to construct the overall architecture of the tea garden 

digital twin system, as shown in Figure 2.  
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It is divided into the perception layer, data resource layer, model layer, application layer, and 

decision layer. Standardized interfaces enable bidirectional data flow and functional collaboration between 

layers, ultimately forming a closed-loop management mechanism (Chen Y.P. et al., 2025). 

 
Fig. 2 - Architecture of the Digital Twin System for Tea Plantation Management 

 

Tea Garden Environmental Perception 

Environmental perception, as the “nerve endings” connecting the twin system with the physical world, 

enables real-time acquisition of tea garden environmental and growth conditions, supporting virtual 

modeling and data analysis. Soil sensors deployed at the surface, 5 cm, and 20 cm depths monitor 

temperature, moisture, electrical conductivity (EC), and nutrient information (N, P, K). A smart weather 

station records air temperature and humidity, light intensity, and CO ₂ concentration, while imaging devices 

capture plant phenotypes and topographic features. These multi-source data provide essential inputs for 

constructing high-precision virtual tea garden models and enabling data-driven management. 

Virtual Tea Garden Environment Construction 

High-fidelity tea plant models form the foundation for 3D visualization. Based on multi -angle images 

of realistic leaf and branch morphology, parametric modeling was performed in 3ds Max. NURBS curves 

(Kuraishi T. et al., 2025) were used to create precise leaf meshes (Figure 3), while cylinder-based 

polygonal editing formed the branch structures.  

 
Fig. 3 - Leaf surface Mesh 
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High-resolution texture maps—Diffuse, Normal, and Displacement—were generated from images 

to represent surface color, roughness, and vein details. A skeletal system was built for branches, and 

leaves were assembled based on image features to produce a biologically accurate model. 

In Unity3D, a digital twin of the tea plantation was constructed by integrating real -world data, 

including plants, meteorological and soil properties, and actual imagery, establishing a dual mapping 

between physical entities and digital models. Terrain textures were generated from image features using 

the Terrains system to form the geospatial environment.  

Then, employ ambient occlusion (AO) (Wu Y.T. et al., 2025) to simulate the attenuation of ambient 

light caused by geometric occlusion, enhancing the realism of details in the virtual environment and 

assisting managers in spatial analysis of tea plant distribution. A tangent space-constrained hemispherical 

sampling domain was constructed based on normal vectors.  

Uniformly distributed sample points were generated using the Hammersley low-discrepancy 

sequence {𝑞𝑖
′}. Its polar coordinates satisfy: 

∅𝑘 =
2𝜋𝑘

𝑁
, 𝑐𝑜𝑠θ𝑘 = √1 − 𝜉𝑘 (1)

Among these, (𝜉𝑘 ∈ 𝑈[0,1)) maps the sampling point to world space via the tangent space transformation 

matrix TBN, yielding the sampled position. 

𝑞𝑖 = 𝑝𝑤𝑜𝑟𝑙𝑑 + 𝑇𝐵𝑁 ∙ (𝑞𝑖
′ ∙ 𝑟) (2) 

Here, 𝑟 ∈ [0.1,2.0] represents the sampling radius, controlling the local occlusion range. After projecting 

the sampling point 𝑞𝑖 into screen space, the theoretical depth 𝑧𝑞𝑖
is computed and compared against the 

actual depth buffer value 𝑑𝑠𝑐𝑟𝑒𝑒𝑛(𝑞𝑖) using a threshold to determine the visibility range. 

𝑉(𝑞𝑖) = {
1,   𝑑𝑠𝑐𝑟𝑒𝑒𝑛(𝑞𝑖) < 𝑧𝑞𝑖

− 𝜖

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3) 

The anti-aliasing threshold 𝜖 = 0.05 𝑚，is used to eliminate artifacts caused by deep buffer quantization 

errors. 

 

The shielding coefficient calculation incorporates a distance attenuation function 𝑤(𝑑) = max (0,1 −

𝑑/𝑟) to suppress far-field interference. The normalized shielding strength is defined as:  

𝐴𝑂(𝑝) = 1 −
1

𝑁
∑ 𝑉(𝑞𝑖) ∙ 𝑤(||𝑞𝑖 − 𝑝𝑤𝑜𝑟𝑙𝑑||)

𝑁

𝑖=1

(4) 

 

Finally, noise reduction is achieved using bilateral filtering that combines spatial and color domains:  

𝐴𝑂𝑓𝑖𝑛𝑎𝑙 =
∑ 𝐴𝑂(𝑗)𝐺𝜎𝑠

(||𝑗 − 𝑝||)𝐺𝜎𝑟
(∆𝐼𝑗𝑝)𝑗∈Ω

∑ 𝐺𝜎𝑠
(||𝑗 − 𝑝||)𝑗∈Ω 𝐺𝜎𝑟

(∆𝐼𝑗𝑝)
(5) 

 

Among these, 𝐺𝜎 represents the Gaussian kernel, 𝜎𝑠 = 2.0 denotes the spatial domain standard 

deviation (controlling the fuzzy range), and 𝜎𝑟 = 0.2  indicates the color domain standard deviation 

(controlling edge sensitivity). 

 

As shown in Fig. 4(a)(d), the AO algorithm with normal alignment sampling and dynamic bilateral 

filtering enables virtual environment rendering to closely match the realism of the actual environment. 

A particle system with Perlin noise was used to generate 3D cloud layers, producing controllable 

pseudo-random values to determine cloud particle distribution, density, and morphology. Precipitation 

simulation also adopted a particle system, with particle density and sound effects adjusted according to 

intensity levels from the twin data, enabling dynamic rain and snow effects, as shown in Fig. 4(b)(e).  

Additionally, Unity’s UGUI, Animation, and Timeline were combined to simulate environmental 

changes, allowing operators to adjust virtual parameters and observe tea plant responses. As shown in 

Fig. 4(c)(f), prolonged soil moisture below the threshold causes virtual leaves to yellow and curl, while 

adaptive decision prompts provide stress warnings and support irrigation optimization.  
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               (a) Real Environment       (b) Meteorological Simulation – Auto      (c) Normal Leaf 

 

     

             (d) Virtual Environment   (e) Meteorological Simulation – Manual     (f) Yellowing & Curling Leaf 

Fig. 4 - Comparative Analysis Between Virtual and Real Scenarios and Data-Driven Effects 

 

Level of Detail (LOD) Processing 

 LOD technology balances rendering efficiency and visual quality in large-scale 3D environments. 

In tea garden models, dense vegetation with complex geometry can overload GPU vertex processing, 

reduce frame rates, and cause Moiré patterns, impacting both performance and accuracy.  

          
              (a)LOD_0             (b)LOD_1           (a)LOD_2        (b)LOD_3 

Fig. 5 - Model Comparison Under Varied LOD Tiers 

A four-level LOD model dynamically adjusts rendering quality by camera distance (Fig.5)  (Xia J.C. 

et al., 1997). Close range (0–15 m: LOD_0) uses high-detail models preserving fine textures and curves. 

Increasing distance activates lower-detail models (15–30 m: LOD_1; 30–60 m: LOD_2; >60 m: LOD_3), 

reducing polygon/vertex computations while maintaining visual coherence. Unity 2023 A/B testing 

(with/without LOD) yielded metrics in Table 1. 

Table 1 

Performance Evaluation of LOD Optimization 

Metrics Control Group Experimental Group Improvement Rate 

Average Frame Rate (fps) 28.6 63.2 121.0% 

Vertex Count (M) 171.5 10.8 93.7% 

CPU Main Thread Time (ms) 17.4 7.7 55.7% 

Rendering Thread Time (ms) 14.3 5.8 59.4% 

 

Based on the quantitative analysis in Table 1, the four-level LOD technology demonstrated 

substantial rendering optimization within the tea garden visualization environment. The r endering thread 

time decreased by 59.4%, indicating a reduced CPU-to-GPU data transfer burden. The average frame 

rate increased to 63.2 FPS (+121.0%), stable performance under varying vegetation densities. 

Additionally, the vertex count was reduced by 93.7% (171.5M → 10.8M), which freed GPU bandwidth for 

advanced post-processing operations (e.g., SSGI) and improved overall visual fidelity.   

Tea Plant Water Requirement Prediction Model 

This study integrates the hydrological mechanisms of the AquaCrop model  (Alvar-Beltrán J. et al., 

2025) with an LSTM neural network, incorporating the FAO Penman-Monteith equation (Shu Z. et al., 

2025).  
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Using air temperature, humidity, wind speed, light intensity, soil temperature, moisture, electrical 

conductivity, daily rainfall, and other meteorological indices as feature parameters, and water requirement 

as the target variable, an AquaCrop-LSTM prediction model was constructed. As shown in Table 2, the 

data were split into training and testing sets with a cutoff date of January 1, 2025. Monitoring timestamps 

were converted to UTC, missing values were handled using forward filling (max gap ≤ 4 hours), a nd 

discrete light intensity data were temporally integrated based on photon flux density theory.  

𝑅𝑠 =
∑ (𝑙𝑢𝑥𝑖 ∙ Δ𝑡𝑖) ∙ 0.0079𝑛

𝑖=1

106
(6) 

In the equation, Δ𝑡𝑖 represents the time difference (in seconds) between adjacent monitoring points. The 

conversion factor of 0.0079 is determined based on the photon energy conversion model, ultimately 

yielding the daily solar radiation amount (MJ/m²/day). 

 

For parameters susceptible to transient disturbances, such as wind speed 𝑢2 and soil EC values, 

outlier detection was performed using Tukey's fences method (IQR=1.5), with Winsorized truncation 

applied based on the 3σ principle. Z-score normalization was conducted separately for the feature matrix 

𝑋 ∈ ℝ𝑛×𝑚 and the target variable y: 

𝑧 =
𝑥 − 𝜇

𝜎
(7) 

In particular, μ and σ are derived from the training set statistics to prevent information leakage.  

 

Table 2 

Source of Data 

Stage Period Location Data Volume (records) 

Training Set 

May 2022 – Dec 2022 
Rizhao City, 

Shandong 
6 × 103 

Jan 2023 – Dec 2023 
Rizhao City, 

Shandong 
8 × 103 

Jan 2024 – Dec 2024 
Rizhao City, 

Shandong 
1 × 104 

Testing Set Jan 2025 – Apr 2025 
Rizhao City, 

Shandong 
6 × 103 

 

 

Reference evapotranspiration (𝐸𝑇0) is calculated using the FAO Penman-Monteith equation, whose 

core formula is: 

𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
(8) 

In the formula: 𝑅𝑛—net radiation (MJ/m²/day) 

   ∆—slope of saturated vapor pressure-temperature curve (kPa/°C) 

   𝛾—dry-wet bulb constant (kPa/°C) 

   𝐺—soil heat flux (MJ/m²/day) 

   𝑢2—wind speed (m/s) 

   𝑒𝑠-𝑒𝑎—saturated and actual vapor pressures, respectively 

    

Tea plant water requirement is adjusted by crop coefficient (𝐾𝑐) to modify 𝐸𝑇0: 

𝐸𝑇𝑐 = max(𝐾𝑐 ∙ 𝐸𝑇0, 0) (9) 

 

To capture the lag effects and cyclical patterns of moisture demand, a multidimensional feature 

space is constructed by introducing a 7-day lag operator: 

𝑋𝑡
(𝑙𝑎𝑔)

= [𝑊𝑎𝑡𝑒𝑟𝑅𝑒𝑞𝑡−1, … , 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑡−7] (10) 

A total of 21-dimensional lag features were generated, covering the physiological delay cycle of tea 

plant water absorption.  
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During model training and evaluation, the Huber loss function (δ=0.5) was employed to balance 

mean squared error (MSE) and mean absolute error (MAE), enhancing robustness to outliers. Weight 

decay (weight_decay=1e⁻⁴) and gradient clipping (clip_grad_norm=0.5) were applied to constrain the 

parameter space, prevent overfitting, and stabilize the LSTM training process. The number of training 

epochs was set between 50 and 200, and batch sizes ranged from 32 to 128 to improve model 

generalization. 

 

Twin Data-Driven Decision Control and Feedback Optimization 

After obtaining physical data and constructing the virtual environment, the system uses real -time 

digital twin data to support virtual–physical interaction and intelligent decision-making, as shown in Fig.6.  

 
Fig. 6 - Data-Driven DT and Decision-Making Processes 

 

Multi-source sensors collect environmental data, which is transmitted via 5G to an edge gateway 

and processed based on OPC UA (Carballo J.A et al., 2024), then forwarded to the cloud through MQTT. 

The cloud server uses MySQL to integrate the data into a dynamically updated digital twin dataset. The 

Unity client retrieves the data through a RESTful API, displays it in real time (Fig. 7(b)), and synchronizes 

the virtual environment, simulating lighting, weather, and crop growth through a particle system scrip t. 

At the smart decision level, the system combines digital twins with predictive models, uses control 

scripts and Unity coroutines for asynchronous control, analyzes data every 30 minutes, and based on the 

water demand predicted by the AquaCrop-LSTM model, calculates the actual irrigation amount Q using 

Equation (15) to generate precise control commands. 

𝑄 =
10 ∙ 𝐸𝑇𝑐 ∙ 𝐴 ∙ 𝑡

𝜂
(11) 

In the equation, 𝐴 represents the sprinkler irrigation area (m²), 𝑡 denotes the forecast period (day), and 

𝜂 indicates the sprinkler irrigation water utilization coefficient.   

    
(a) Aerial View of Ecological Tea Garden                (b) Main Interface of Twin Tea Garden 

Fig. 7 - Tea Plantation Aerial View and Digital Twin Dashboard 
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    (a) Physical Devices                                               (b) Client Response Feedback  

Fig. 8 - Tea Garden Physical Devices and Client Response 

The control script analyzes state changes in the virtual model to generate irrigation commands, 

which are downlinked asynchronously via an edge gateway to precisely control physical irrigation 

equipment in the tea garden (as shown in Fig. 8(a)). The result ing environmental parameters then drive 

synchronous updates in the virtual environment (see Fig. 8(b)).  

These state data are fed back into the decision-making mechanism and integrated with the digital 

twin dataset to optimize decisions, effectively preventing water stress and disease spread caused by 

under- or over-irrigation. This enables closed-loop precision irrigation control. 

 

RESULTS 

Prediction Model Validation 

To evaluate the performance of the AquaCrop-LSTM model, it was compared against three other 

models—LightGBM, TCN-Transformer, and Random Forest—using MAE, MSE, and R² under consistent 

input features and hyperparameter optimization. AquaCrop-LSTM outperformed all others in every metric. 

As shown in Figure 9, the model demonstrated high accuracy in predicting tea plant water demand, 

with absolute errors below 0.4 mm in 94.5% of cases. Its MAE (0.251 mm) was 19.7% lower than that of 

LightGBM, the second-best model, due to its effective integration of crop growth modeling and temporal 

feature extraction via LSTM. During the high-demand period (March 15–25, 2025), the average deviation 

was 0.12 mm, and its MSE (0.166 mm²) was 34.0% lower than TCN-Transformer (0.251 mm²). 

Table 3 

Comparison of Model Performance 

Models MAE/(mm) MSE/(mm) 𝑹𝟐 

LightGBM 0.314 0.219 0.904 

TCN-Transformer 0.344 0.251 0.878 

Random Forest 0.433 0.302 0.852 

AquaCrop-LSTM 0.251 0.166 0.927 

     

(a) LightGBM Error Variation Curve   (b) TCN-Transformer Error Variation Curve 

  
(c) Random Forest Error Variation Curve   (d) AquaCrop-LSTM Error Variation Curve 

 

Fig. 9 - Comparison of Error for Each Model Folded Line 



Vol. 77, No. 3 / 2025  INMATEH - Agricultural Engineering 

 

 438  

  
 (a) LightGBM: Predicted vs. Actual      (b) TCN-Transformer: Predicted vs. Actual 

  
      (c) Random Forest: Predicted vs. Actual         (d) AquaCrop-LSTM: Predicted vs. Actual 

Fig. 10 - Comparison of Predicted and True Values for Each Model Folded Line 

 

Under extreme weather conditions, prediction errors reached 32.6% and 28.4% on February 16 

(frost) and April 10 (heavy rainfall), respectively, due to input deviations from abrupt environmental 

changes (Fig. 10). In contrast, TCN-Transformer showed significant lag errors during high water-demand 

periods (March 20–April 1), while AquaCrop-LSTM effectively integrated environmental factors—including 

soil temperature, moisture, light, and rainfall—via multi-scale feature fusion, enhancing timeliness and 

robustness under sudden weather shifts. 

In summary, by combining hydrological mechanisms of crop modeling with data-driven methods, 

the AquaCrop-LSTM model outperforms comparative models in both prediction accuracy and stability. It 

achieved a 38.1% reduction in error standard deviation and a 2.3% improvement in R² in high-value 

intervals, providing a reliable theoretical basis for precision irrigation management in tea gardens.  

Twin System Stability Validation 

To evaluate the stability of the tea garden digital twin system under multi -user and high-volume data 

transmission, gradient stress testing was conducted in Unity 2023.1.1f1c1. Seven concurrency levels (1 

to 30) were set, each running 360 cycles processing 364,000 multi-source heterogeneous data per cycle. 

Performance was sampled every 200ms, focusing on CPU usage, memory consumption, response time, 

and transmission error rate, with thresholds given in Table 4. 

Table 4 

Performance Metric Thresholds for Stress Testing 

Concurrency 

Level 

Response time  

(ms) 

Memory usage  

(MB) 

CPU usage  

(%) 

Average Error Rate  

(%) 

1 ≤800 ≤500 ≤30 ≤0.01 

5 ≤1200 ≤800 ≤40 ≤0.01 

10 ≤1800 ≤1200 ≤50 ≤0.015 

15 ≤2500 ≤1500 ≤60 ≤0.015 

20 ≤3500 ≤1800 ≤70 ≤0.02 

25 ≤4500 ≤2000 ≤80 ≤0.02 

30 ≤6000 ≤2200 ≤90 ≤0.025 

 

 

As shown in Figure 11, as concurrency increased from 1 to 30, CPU usage rose from 20–25% to 80–

85%, stabilizing at 84%±2%; memory usage grew from 400–500 MB to 1900–2100 MB, and response time 

extended from 500–600 ms to 4800–5100 ms—all within acceptable thresholds (CPU <90%, response time 

<6000 ms). The transmission error rate remained below 0.02%. Dynamic thread scheduling effectively 

prevented resource contention, with no memory leaks or abnormal delays. 
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(a) CPU Usage Analysis                                 (b) Average Error Rate per Round 

 
(c) Memory Usage Analysis                                                                 (d) Response Time 

Fig. 11 - Trend Chart of Performance Metrics Across Concurrency Levels 

In conclusion, the system maintains a very low error rate (<0.02%) under high concurrency (30 users) 

and large data throughput (364,000 entries/cycle), effectively mitigating resource contention and balancing 

load to ensure reliability and stability in complex agricultural digital twin applications. 

 

CONCLUSIONS 

This study integrates OPC UA and MySQL for multi-source data connectivity, together with high-

precision parametric models built in 3ds Max and Unity, enhanced through particle systems, dynamic shaders, 

ambient occlusion (AO), and LOD techniques. Combined with a hybrid water-demand prediction model that 

incorporates the FAO Penman–Monteith equation, AquaCrop mechanisms, and LSTM networks, a six-

dimensional digital twin system for tea garden management was developed, enabling continuous sensing, 

virtual–physical mapping, data-driven prediction, and closed-loop control. The system provides high-fidelity 

real-time visualization of tea plants and their environment, and the AquaCrop–LSTM model achieves superior 

performance (MAE = 0.251 mm, R² = 0.927). Under 30 concurrent users and 364,000 data records per cycle, 

the platform maintained stable CPU usage (84% ± 2%) with an error rate below 0.02%, demonstrating strong 

robustness and scalability. Overall, the proposed framework offers reliable technical support for visual 

monitoring, irrigation optimization, and intelligent decision-making in tea gardens, and provides a transferable 

reference for precision irrigation in other perennial crops. 
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